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INTRODUCTION

For the vector Y = (YI ,Y2 ,... , Yn), let II Y II = L;~l IYi I. Let {Ej },

j = 1,2,... , n, be the canonical basis for Rn. If Y(x) is the unique solution on
[0, b] to

L[Y] == Y' + F(x, Y) + G(x, Y) = hex),

YeO) = A = (ai, a2 , ••• , an),

then we consider best approximating Y(x) by elements of the set

where
k n

Pix) = A + L Xi L cOEj ,
i~l j~l

in the sense that

lIb ll/q
II hex) - L[Pix)]llq = 0 II hex) - L[Pk(x)]llq dx\

(1)

(2)

(3)

(4)

(5)

is a minimum, q ~ 1.
In a previous paper in this journal [1], the author has considered the

problem of approximating the solution to (I) and (2) (scalar case) by
polynomials Pk(X) that minimize

II hex) - L[Pk(x)]11 = sup IL[y(x)] - L[Pk(x)]I.
O~x~b

This paper is a sequel to Ref. [1]. Since the L q norm is being used, the analysis
is, in general, different. In the case of repetitious arguments, details will be
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omitted. Stein and Klopfenstein have considered a vector problem of this
type; their analysis involved a linear system [4).

THE EXISTENCE OF BEST ApPROXIMATIONS

Showing that there exists a "vector polynomial" in the set f!lJ k that is the
best approximation to Y(x) in the sense of (5), essentially involves proving
that there exists a vector c* ESC R(k+1)n, S closed, such that

II h(x) - R(c*, x)llq = infll h(x) - R(c, x)llq,
cES

where R(c, x) = L[Pk(x»). Thus, the existence of a "vector polynomial"
in f!lJk that minimizes (5) is a nonlinear best approximation problem.

In order to insure a best approximation to Y(x) in sense of (5), and to
insure later results, we assume that the operator L satisfies the following
conditions:

(i) F and G are elements of C[I X Rn, Rn], where I = [0, b).

(ii) There exist real numbers ex, fJ and scalar functions u(x), 8(Y), and
lAx, Y) such that, for all r :?c 1,

II G(x, Y)ll :?c r a II u(x) 8(+)11
and

II F(x, Y)II :(; r131 fL (x, ~ )1;
furthermore,

(a) the function u(x) is not zero almost everywhere and is L q , q :?c 1.

(b) 8 E C[Rn, R], and 8(Y) = 0 if and only if II YII = o.
(c) fL(X, Y) E C[I X Rn, R].

Scalar examples of such operators may be found in Ref. [1]. An additional
example is now given. Let Y = (Y1 , yJ, and
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where fl , f2 , VI , V2 , g, hI , and h2 are continuous on [0, b], and g(x) * 0.
Then

Thus, we may take u(x) = g(x), O(Y) = IYt 13 + Y22, /L(x, Y) = II F(x, Y)II,
ex = 2, f3 = 1.

We now state the principal theorem of this section.

THEOREM 1. Suppose that F and G satisfy conditions (i) and (ii), and that
hex) E C[I, Rn]. If ex > max(l, {3), then there exists a polynomial Pk*(x) in f!Jk
such that

II hex) - L[Pk*(x)]llq = in!: II hex) - L[Pk(x)]llq .
PkEvk

The proof of this theorem is similar to that of Theorem 1 of Ref. [1] and is,
therefore, omitted.

CONVERGENCE OF ApPROXIMATING POLYNOMIALS

THEOREM 2. Suppose that Y(x) is the unique solution to (1) and (2) on [0, b].
Further, suppose that F, G, and h satisfy the conditions of Theorem 1, and that
F + G satisfies a Lipschitz condition in Yon every compact subset S ofI X Rn,
i.e., if (x, Y1) and (x, Y2) E S, then

If {Pk(x)} is a sequence of vector polynomials which,for each k, minimize (5),
then

lim II Y(x) - Pk(x)II = 0,
k"'oo

uniformly on [0, b].

Proof For notational convenience, let F(x, Y) + G(x, Y) = T(x, Y). Let
Qk(X) E f7Jk , k = 1,2,... , be such that

where

lim Ek = 0.
k->oo

i = 0, 1, (6)

(7)
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(Such Qk(X) are known to exist.) Then

II hex) - L[Qk(x)]11 = II Y' - Qk' + T(x, Y) - T(x, Qk)11

<; I Y' - Qk' II + II T(x, Y) - T(x, Qk)11

<; €k + Mil Y - Qk II

<; €k(1 + M).

But

II hex) - L[Pk(x)]llq <; II hex) - L[Qix)]llq .

Therefore

lim II hex) - L[Pk(x)]llq = o.
k->oo

Let

Then

This implies that

where

From (1) we have that Y(x) is the unique solution to

Y(x) = H(x) - ( T(t, yet»~ dt,

where

H(x) = (h(t) dt + A.

Also

II H(x) - Hk(x) II = II J: fk(t) dt \\.

(8)

(9)

(10)

(11)

(12)
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But HOlder's inequality implies that

343

II I: fit) dt II :(; M Ilfit)llq ,

Therefore, (9) implies that

where M is a constant. (13)

and, consequently, by (12),

lim II H(x) - Hk(x)I1= 0,
k-.oo

(14)

uniformly on [0, b]. Now (10), (II) and (14) suggest we consider Volterra
integral equations

(I* - K*)1> = rn

and

(I* - K*)1> = r,

where 1*1> = 1>,

K*1> = s: K(x, t, 1>(t» dt,

and where

(10')

(I I')

lim II rn(x) - r(x)11 = 0,
n-"oo

uniformly on [0, b].

Suppose that Yn(x) is a solution to (10') on [0, b] and that y(x) is the unique
solution to (11') on [0, b]. Then it can be shown that if K E C[I x 1 x Rn, Rn],
1 = [0, b], and if, for SCI x 1 x Rn, S compact, (x, t, Y) E S, (x, t, Z) E S,
we have

II K(x, t, Y) - K(x, t, Z)II :(; M s II Y - Z II,

then

lim II Yn(x) - y(x)11 = 0,
n-"oo

uniformly on [0, b].
Applying these remarks to (10) and (11), we have

lim II Y(x) - Pix)II = 0,
k-"oo

uniformly on [0, b].
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COROLLARY 1. Suppose that the hypotheses of Theorem 2 are satisfied. Let
Qix) E [!JJk , k = 1, 2, ... , where

i = 0, 1,

and where limk->oo Ek = O. If Pk(x) is a vector polynomial of degree k that
minimizes (5), then

II Y(x) - Pix)11 < NEk .

Proof. For all k, Theorem 2 implies that {(x, Pk(x»} ~ S ~ I X Rn, where
S is compact. Without loss of generality we may assume that {(x, Qk(X»} ~ S
for all k. Then the argument following (7) shows that

Ilfk(x)llq < Ek(1 + M).

But Eqs. (10) and (11) imply that

Y(x) - Pk(x) = J: fk(t) dt + J: T(t, Pit» dt - J: T(t, Y(t» dt.

Consequently

II Y(x) - Pk(x)ll ~ Ilf(x)llq + ([I T(t, yet»~ - T(t, Pk(t»11 dt.

(15)

Therefore (15), the Lipschitz condition on S, and Gronwall's inequality imply
that

We note that Corollary implies that if YCPl(X) satisfies a Lipschitz
condition on [0, b), then

N*
II Y(x) - Pix)II < F

for k sufficiently large.

COROLLARY 2. Suppose that the hypotheses of Theorem 2 are satisfied.
If Pk(x) and Qk(X), k = 1,2'00" are the vector polynomials described in
Corollary 1, and if limk->oo k2Ek = 0, then limk->oo II Y'(x) - Pk'(x)11 = 0,
uniformly on [0, b].

This corollary is a direct consequence of Markoff's inequality. The details
of the proof are omitted.
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