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INTRODUCTION

For the vector Y = (yy,Ya,wba), let | Y] = 3oy |yl Let {E},
j=1,2,..., n, be the canonical basis for R*. If ¥(x) is the unique solution on
[0, b] to

LIY]=Y 4+ F(x, Y)+ G(x, Y) = h(x), (1)
YO0) = A4 =(a,, as ,..., ay), 2)

then we consider best approximating Y(x) by elements of the set

2, = (P} ©
where
Px) = A+ ilxi ﬁ‘ic,-jEj , )
in the sense that
1G9 = LIPCle = | 169 — LIPGr ] 0

is @ minimum, ¢ > 1.

In a previous paper in this journal [1], the author has considered the
problem of approximating the solution to (1) and (2) (scalar case) by
polynomials py(x) that minimize

[1h(x) — LIpe)] = sup | LIy()] — LIp0)]l-
This paper is a sequel to Ref. [1]. Since the L, norm is being used, the analysis
is, in general, different. In the case of repetitious arguments, details will be
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omitted. Stein and Klopfenstein have considered a vector problem of this
type; their analysis involved a linear system [4].

THE EXISTENCE OF BEST APPROXIMATIONS

Showing that there exists a “vector polynomial” in the set &, that is the
best approximation to ¥(x) in the sense of (5), essentially involves proving
that there exists a vector ¢* € S C R*+V%  § closed, such that

| A) — R(e*, D), = inf Il hx) — R(e, Dl

where R(c, x) = L[Pi(x)]. Thus, the existence of a ‘“‘vector polynomial”
in #, that minimizes (5) is a nonlinear best approximation problem.

In order to insure a best approximation to Y(x) in sense of (5), and to
insure later results, we assume that the operator L satisfies the following
conditions:

(i) Fand G are elements of C[I X R", R*], where I = [0, b].

(i) There exist real numbers «, B and scalar functions u(x), 6(Y), and
u(x, Y) such that, for all r > 1,

TR A PEYIRE
and

I F(x, Yl < r"' p (x, %)‘
furthermore,

(a) the function u(x) is not zero almost everywhere and is L, , ¢ > 1.
(b) 6eC[R R), and 8(Y) = 0 if and only if || ¥ || = 0.
(©) wulx, Y)eC[I X R, R].

Scalar examples of such operators may be found in Ref. [1]. An additional
example is now given. Let Y = (y;, »,), and

_ n S1(x) ¥+ foX) y2
Li¥)= ]+ [ o L o0 vn g0 8+ yid + evrsiton]

hy(x) _
= [hg(x) 2 Y(O) - (al ? a2)9
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where f;, fo, U1, Us, & hy , and h, are continuous on [0, ], and g(x) = 0.
Then

_ [hn + fere — 0
Fx, ¥) = [Ulyl + sz’z]’ G, ¥) = [g(l N4yl + 6’1/%2“))]‘

Thus, we may take u(x) = g(x), (Y) = | 3, ¥ + »,% wlx, Y) = | F(x, V)|,
a=2B=1
We now state the principal theorem of this section.

THEOREM 1. Suppose that F and G satisfy conditions (i) and (ii), and that
h(x) € C[I, R*]. If « > max(l, B), then there exists a polynomial P,*(x) in P,
such that

1400 — LP(lla = ik 1| 5G) — LIPAO, -

The proof of this theorem is similar to that of Theorem 1 of Ref. [1] and is,
therefore, omitted.

CONVERGENCE OF APPROXIMATING POLYNOMIALS

THEOREM 2. Suppose that Y(x) is the unigue solution to (1) and (2) on [0, b].
Further, suppose that F, G, and h satisfy the conditions of Theorem 1, and that
F + G satisfies a Lipschitz condition in Y on every compact subset S of I X R™,
ie., if (x, Yy) and (x, Y,) €S, then

| F(x, Y1) + G(x, Y1) — F(x, Y) — G(x, V)| < Ms|| Y1 — DLl

If {P,(x)} is a sequence of vector polynomials which, for each k, minimize (5),
then

lim | () — PGl = 0,

uniformly on [0, b].

Proof. For notational convenience, let F(x, Y) + G(x, ¥) = T(x, Y). Let
0ux)e P, k =1, 2,.., be such that

1Y) — 0Pl < &, i=0,1, (6)
where

lim &, = 0. @)
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(Such Q,(x) are known to exist.) Then
4G — LIQ)]l = | Y — Q" + T(x, Y) — T(x, Q)
<Y = Q' [+ 11 T, Y) — T(x, @l
< g+ MY — Oyl
<

el + M).
But
I A(x) — LIP), < [ A(x) — LGN, -
Therefore
lim || h(x) — LIP0)ll = O.
Let
Si(x) = h(x) — LIP(x)].
Then

Py + T(x, Pr) = h(x) — fi(x).

This implies that
Pi(x) = Hy) — | T Py dr

where

Hx) = | *n(t) di — | “fd) di + A.
0 0
From (1) we have that Y(x) is the unique solution to
Y() = Hx) — [ T, Y s
0

where

H(x) — fo K1) dt + A.

Also
| He) — )l = | [ 0 futey de |

@®

)

(10)

(11)

(12)
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But Holder’s inequality implies that

|| rwde| < Mipol,  where Misaconstant.  (13)

Therefore, (9) implies that
] 70|~ o

and, consequently, by (12),
lim || HG) — Hi() = 0. (14)

uniformly on [0, 5]. Now (10), (11) and (14) suggest we consider Volterra
integral equations

(I* — K¥¢ =r, (10"
and

I* — KN =r, (11)

where I*¢ = ¢,

K= | " K(x, 1, $(0)) dr,
0
and where
Liglc [ 7a(x) — r(x)| = O, uniformly on [0, b].

Suppose that y,(x) is a solution to (10") on [0, b] and that y(x) is the unique
solution to (11") on [0, b]. Then it can be shown thatif Ke C[I X I x R", R%],
I =10,b}, and if, for SCI x I X R", S compact, (x,¢, Y)e 8§, (x,t,Z)eS,
we have

| K(x, 8, ¥Y) — K(x, t, Z)| < Ms|| Y — Z]|,
then
lim || yu(x) — y(X)il = 0,

uniformly on [0, b].
Applying these remarks to (10) and (11), we have

lim || ¥(x) — Py(x)l = O,

uniformly on [0, 5].
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COROLLARY 1. Suppose that the hypotheses of Theorem 2 are satisfied. Let
0(x)e Py, k =1, 2,..., where

1 Y9%) — 0P < &,  i=0,1,

and where lim, ., ¢, = 0. If Py(x) is a vector polynomial of degree k that
minimizes (5), then

| Y(x) — Pi(x)| < Neg .

Proof. For all k, Theorem 2 implies that {(x, P.(x))} €S C I X R", where
S is compact. Without loss of generality we may assume that {(x, @(x))} C S
for all k. Then the argument following (7) shows that

1Ay < (1 + M). (15)
But Eqgs. (10) and (11) imply that

Y@ — P = | 0 foydr + | 0 T(, Put) dt — | 0 (1, Y(2)) dt.

Consequently

I Y69 — Pl < 1FGa+ |1 TG Y(0) — Tt, PO .

Therefore (15), the Lipschitz condition on S, and Gronwall’s inequality imply
that

I Y(x) — Py(x)ll < Neg.

We note that Corollary 1 implies that if Y®)(x) satisfies a Lipschitz
condition on [0, 4], then

N*
| Y(x) — Pu(0)ll < T
for k sufficiently large.

COROLLARY 2. Suppose that the hypotheses of Theorem 2 are satisfied.
If Pyx) and Qu(x), k = 1,2,..., are the vector polynomials described in
Corollary 1, and if lim,,, k%, = 0, then limy, || Y'(x) — P,'(x)]| = 0,
uniformly on [0, b).

This corollary is a direct consequence of Markoff’s inequality. The details
of the proof are omitted.
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