Best L_{q} Approximate Solutions of Certain Systems of Differential Equations

Myron S. Henry
Department of Mathematics, Montana State University, Bozeman, Montana 59715

Communicated by Oved Shisha
Received March 18, 1970

Introduction

For the vector $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, let $\|Y\|=\sum_{i=1}^{n}\left|y_{i}\right|$. Let $\left\{E_{j}\right\}$, $j=1,2, \ldots, n$, be the canonical basis for R^{n}. If $Y(x)$ is the unique solution on $[0, b]$ to

$$
\begin{gather*}
L[Y] \equiv Y^{\prime}+F(x, Y)+G(x, Y)=h(x) \tag{1}\\
Y(0)=A=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \tag{2}
\end{gather*}
$$

then we consider best approximating $Y(x)$ by elements of the set

$$
\begin{equation*}
\mathscr{P}_{k}=\left\{P_{k}(x)\right\}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{k}(x)=A+\sum_{i=1}^{k} x^{i} \sum_{j=1}^{n} c_{i j} E_{j} \tag{4}
\end{equation*}
$$

in the sense that

$$
\begin{equation*}
\left\|h(x)-L\left[P_{k}(x)\right]\right\|_{q}=\left\{\int_{0}^{b}\left\|h(x)-L\left[P_{k}(x)\right]\right\|^{q} d x\right\}^{1 / q} \tag{5}
\end{equation*}
$$

is a minimum, $q \geqslant 1$.
In a previous paper in this journal [1], the author has considered the problem of approximating the solution to (1) and (2) (scalar case) by polynomials $p_{k}(x)$ that minimize

$$
\left\|h(x)-L\left[p_{k}(x)\right]\right\|=\sup _{0 \leqslant x \leqslant b}\left|L[y(x)]-L\left[p_{k}(x)\right]\right| .
$$

This paper is a sequel to Ref. [1]. Since the L_{q} norm is being used, the analysis is, in general, different. In the case of repetitious arguments, details will be
omitted. Stein and Klopfenstein have considered a vector problem of this type; their analysis involved a linear system [4].

The Existence of Best Approximations

Showing that there exists a "vector polynomial" in the set \mathscr{P}_{k} that is the best approximation to $Y(x)$ in the sense of (5), essentially involves proving that there exists a vector $c^{*} \in S \subseteq R^{(k+1) n}, S$ closed, such that

$$
\left\|h(x)-R\left(c^{*}, x\right)\right\|_{q}=\inf _{c \in S}\|h(x)-R(c, x)\|_{q}
$$

where $R(c, x)=L\left[P_{k}(x)\right]$. Thus, the existence of a "vector polynomial" in \mathscr{P}_{k} that minimizes (5) is a nonlinear best approximation problem.

In order to insure a best approximation to $Y(x)$ in sense of (5), and to insure later results, we assume that the operator L satisfies the following conditions:
(i) F and G are elements of $C\left[I \times R^{n}, R^{n}\right]$, where $I=[0, b]$.
(ii) There exist real numbers α, β and scalar functions $u(x), \theta(Y)$, and $\mu(x, Y)$ such that, for all $r \geqslant 1$,

$$
\|G(x, Y)\| \geqslant r^{\alpha}\left\|u(x) \theta\left(\frac{Y}{r}\right)\right\|
$$

and

$$
\|F(x, Y)\| \leqslant r^{\beta}\left|\mu\left(x, \frac{Y}{r}\right)\right| ;
$$

furthermore,
(a) the function $u(x)$ is not zero almost everywhere and is $L_{q}, q \geqslant 1$.
(b) $\theta \in C\left[R^{n}, R\right]$, and $\theta(Y)=0$ if and only if $\|Y\|=0$.
(c) $\mu(x, Y) \in C\left[I \times R^{n}, R\right]$.

Scalar examples of such operators may be found in Ref. [1]. An additional example is now given. Let $Y=\left(y_{1}, y_{2}\right)$, and

$$
\begin{aligned}
L[Y] & \equiv\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right]+\left[\begin{array}{l}
f_{1}(x) y_{1}+f_{2}(x) y_{2} \\
v_{1}(x) y_{1}+v_{2}(x) y_{2}+g(x)\left(\left|y_{1}\right|^{3}+y_{2}^{2}+e^{1 /\left(y_{1}{ }^{2}+1\right)}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x)
\end{array}\right], \quad Y(0)=\left(a_{1}, a_{2}\right)
\end{aligned}
$$

where $f_{1}, f_{2}, v_{1}, v_{2}, g, h_{1}$, and h_{2} are continuous on $[0, b]$, and $g(x) \neq 0$. Then

$$
F(x, Y)=\left[\begin{array}{c}
f_{1} y_{1}+f_{2} y_{2} \\
v_{1} y_{1}+v_{2} y_{2}
\end{array}\right], \quad G(x, Y)=\left[\begin{array}{c}
0 \\
g\left(\left|y_{1}\right|^{3}+y_{2}^{2}+e^{1 /\left(y_{1}{ }^{2}+1\right)}\right)
\end{array}\right] .
$$

Thus, we may take $u(x)=g(x), \theta(Y)=\left|y_{1}\right|^{3}+y_{2}{ }^{2}, \mu(x, Y)=\|F(x, Y)\|$, $\alpha=2, \beta=1$.

We now state the principal theorem of this section.
Theorem 1. Suppose that F and G satisfy conditions (i) and (ii), and that $h(x) \in C\left[I, R^{n}\right]$. If $\alpha>\max (1, \beta)$, then there exists a polynomial $P_{k}{ }^{*}(x)$ in \mathscr{P}_{k} such that

$$
\left\|h(x)-L\left[P_{k}^{*}(x)\right]\right\|_{q}=\inf _{P_{k} \in_{k}}\left\|h(x)-L\left[P_{k}(x)\right]\right\|_{\mathcal{q}}
$$

The proof of this theorem is similar to that of Theorem 1 of Ref. [1] and is, therefore, omitted.

Convergence of Approximating Polynomials

Theorem 2. Suppose that $Y(x)$ is the unique solution to (1) and (2) on $[0, b]$. Further, suppose that F, G, and h satisfy the conditions of Theorem 1 , and that $F+G$ satisfies a Lipschitz condition in Y on every compact subset S of $I \times R^{n}$, i.e., if $\left(x, Y_{1}\right)$ and $\left(x, Y_{2}\right) \in S$, then

$$
\left\|F\left(x, Y_{1}\right)+G\left(x, Y_{1}\right)-F\left(x, Y_{2}\right)-G\left(x, Y_{2}\right)\right\| \leqslant M_{S}\left\|Y_{1}-Y_{2}\right\| .
$$

If $\left\{P_{k}(x)\right\}$ is a sequence of vector polynomials which, for each k, minimize (5), then

$$
\lim _{k \rightarrow \infty}\left\|Y(x)-P_{k}(x)\right\|=0
$$

uniformly on $[0, b]$.
Proof. For notational convenience, let $F(x, Y)+G(x, Y)=T(x, Y)$. Let $Q_{k}(x) \in \mathscr{P}_{k}, k=1,2, \ldots$, be such that

$$
\begin{equation*}
\left\|Y^{(i)}(x)-Q_{k}^{(i)}(x)\right\| \leqslant \epsilon_{k}, \quad i=0,1 \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \epsilon_{k}=0 \tag{7}
\end{equation*}
$$

(Such $Q_{k}(x)$ are known to exist.) Then

$$
\begin{align*}
\left\|h(x)-L\left[Q_{k}(x)\right]\right\| & =\left\|Y^{\prime}-Q_{k}^{\prime}+T(x, Y)-T\left(x, Q_{k}\right)\right\| \\
& \leqslant\left\|Y^{\prime}-Q_{k}^{\prime}\right\|+\left\|T(x, Y)-T\left(x, Q_{k}\right)\right\| \\
& \leqslant \epsilon_{k}+M\left\|Y-Q_{k}\right\| \tag{8}\\
& \leqslant \epsilon_{k}(1+M) .
\end{align*}
$$

But

$$
\left\|h(x)-L\left[P_{k}(x)\right]\right\|_{q} \leqslant\left\|h(x)-L\left[Q_{k}(x)\right]\right\|_{q}
$$

Therefore

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|h(x)-L\left[P_{k}(x)\right]\right\|_{q}=0 \tag{9}
\end{equation*}
$$

Let

$$
f_{k}(x)=h(x)-L\left[P_{k}(x)\right] .
$$

Then

$$
P_{k}^{\prime}+T\left(x, P_{k}\right)=h(x)-f_{k}(x)
$$

This implies that

$$
\begin{equation*}
P_{k}(x)=H_{k}(x)-\int_{0}^{x} T\left(t, P_{k}(t)\right) d t \tag{10}
\end{equation*}
$$

where

$$
H_{k}(x)=\int_{0}^{x} h(t) d t-\int_{0}^{x} f_{k}(t) d t+A
$$

From (1) we have that $Y(x)$ is the unique solution to

$$
\begin{equation*}
Y(x)=H(x)-\int_{0}^{x} T(t, Y(t)) d t \tag{11}
\end{equation*}
$$

where

$$
H(x)=\int_{0}^{x} h(t) d t+A
$$

Also

$$
\begin{equation*}
\left\|H(x)-H_{k}(x)\right\|=\left\|\int_{0}^{x} f_{k}(t) d t\right\| \tag{12}
\end{equation*}
$$

But Hölder's inequality implies that

$$
\begin{equation*}
\left\|\int_{0}^{x} f_{k}(t) d t\right\| \leqslant M\left\|f_{k}(t)\right\|_{q}, \quad \text { where } M \text { is a constant. } \tag{13}
\end{equation*}
$$

Therefore, (9) implies that

$$
\lim _{k \rightarrow \infty}\left\|\int_{0}^{x} f_{k}(t) d t\right\|=0
$$

and, consequently, by (12),

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|H(x)-H_{k}(x)\right\|=0 \tag{14}
\end{equation*}
$$

uniformly on $[0, b]$. Now (10), (11) and (14) suggest we consider Volterra integral equations

$$
\left(I^{*}-K^{*}\right) \phi=r_{n}
$$

and

$$
\left(I^{*}-K^{*}\right) \phi=r
$$

where $I^{*} \phi=\phi$,

$$
K^{*} \phi=\int_{0}^{x} K(x, t, \phi(t)) d t
$$

and where

$$
\lim _{n \rightarrow \infty}\left\|r_{n}(x)-r(x)\right\|=0, \quad \text { uniformly on }[0, b]
$$

Suppose that $y_{n}(x)$ is a solution to $\left(10^{\prime}\right)$ on $[0, b]$ and that $y(x)$ is the unique solution to (11^{\prime}) on $[0, b]$. Then it can be shown that if $K \in C\left[I \times I \times R^{n}, R^{n}\right]$, $I=[0, b]$, and if, for $S \subseteq I \times I \times R^{n}, S$ compact, $(x, t, Y) \in S,(x, t, Z) \in S$, we have

$$
\|K(x, t, Y)-K(x, t, Z)\| \leqslant M_{S}\|Y-Z\|
$$

then

$$
\lim _{n \rightarrow \infty}\left\|y_{n}(x)-y(x)\right\|=0
$$

uniformly on $[0, b]$.
Applying these remarks to (10) and (11), we have

$$
\lim _{k \rightarrow \infty}\left\|Y(x)-P_{k}(x)\right\|=0
$$

uniformly on $[0, b]$.

Corollary 1. Suppose that the hypotheses of Theorem 2 are satisfied. Let $Q_{k}(x) \in \mathscr{P}_{k}, k=1,2, \ldots$, where

$$
\left\|Y^{(i)}(x)-Q_{k}^{(i)}(x)\right\| \leqslant \epsilon_{k}, \quad i=0,1
$$

and where $\lim _{k \rightarrow \infty} \epsilon_{k}=0$. If $P_{k}(x)$ is a vector polynomial of degree k that minimizes (5), then

$$
\left\|Y(x)-P_{k}(x)\right\| \leqslant N \epsilon_{k} .
$$

Proof. For all k, Theorem 2 implies that $\left\{\left(x, P_{k}(x)\right)\right\} \subseteq S \subseteq I \times R^{n}$, where S is compact. Without loss of generality we may assume that $\left\{\left(x, Q_{k}(x)\right)\right\} \subseteq S$ for all k. Then the argument following (7) shows that

$$
\begin{equation*}
\left\|f_{k}(x)\right\|_{\alpha} \leqslant \epsilon_{k}(1+M) . \tag{15}
\end{equation*}
$$

But Eqs. (10) and (11) imply that

$$
Y(x)-P_{k}(x)=\int_{0}^{x} f_{k}(t) d t+\int_{0}^{x} T\left(t, P_{k}(t)\right) d t-\int_{0}^{x} T(t, Y(t)) d t .
$$

Consequently

$$
\left\|Y(x)-P_{k}(x)\right\| \leqslant\|f(x)\|_{q}+\int_{0}^{x}\left\|T(t, Y(t))-T\left(t, P_{k}(t)\right)\right\| d t
$$

Therefore (15), the Lipschitz condition on S, and Gronwall's inequality imply that

$$
\left\|Y(x)-P_{k}(x)\right\| \leqslant N \epsilon_{k} .
$$

We note that Corollary 1 implies that if $Y^{(p)}(x)$ satisfies a Lipschitz condition on $[0, b]$, then

$$
\left\|Y(x)-P_{k}(x)\right\| \leqslant \frac{N^{*}}{k^{x}}
$$

for k sufficiently large.
Corollary 2. Suppose that the hypotheses of Theorem 2 are satisfied. If $P_{k}(x)$ and $Q_{k}(x), k=1,2, \ldots$, are the vector polynomials described in Corollary 1, and if $\lim _{k \rightarrow \infty} k^{2} \epsilon_{k}=0$, then $\lim _{k \rightarrow \infty}\left\|Y^{\prime}(x)-P_{k}{ }^{\prime}(x)\right\|=0$, uniformly on $[0, b]$.

This corollary is a direct consequence of Markoff's inequality. The details of the proof are omitted.

References

1. M. S. Henry, Best approximate solutions of nonlinear differential equations, J. Approximation Theory 3 (1970), 59-65.
2. J. R. Rice, "The Approximation of Functions," Vol. 1., Addison-Wesley, Reading, 1964.
3. J. R. Rice, "The Approximation of Functions," Vol. 2., Addison-Wesley, Reading, 1969.
4. F. M. Stein and Kenneth F. Klopfenstein, Approximate solutions of a system of differential equations, J. Approximation Theory 1 (1968), 279-292.
